1 H AND 13 C NMR SPECTRA OF TETRAALKYLBORON ATE COMPLEXES. HYDRIDE CHARACTER OF α -HYDROGENS TO BORON 1)

Yoshinori YAMAMOTO,* Hiroo TOI, Akio SONODA, and Schun-Ichi MURAHASHI

Department of Chemistry, Faculty of Engineering Science

Osaka University, Toyonaka, Osaka 560

 1 H and/or 13 C NMR spectra of tetraalkylboron ate complexes ($\frac{1}{2}$ - $\frac{3}{2}$) reveal that the α -hydrogens and/or α -carbons to boron are shielded in comparison with those of the corresponding trialkylboranes ($\frac{4}{2}$ - $\frac{6}{2}$). These results indicate the hydride character of α -hydrogens in $\frac{1}{2}$ - $\frac{3}{2}$.

We recently reported that 9-borabicyclo[3.3.1]nonane (9-BBN) ate complexes ($\underline{1}$) enable the selective removal of halo group from tertiary alkyl, benzyl, and allyl halides to afford the corresponding hydrocarbons in excellent yields without a concomitant attack on secondary, primary, and aryl derivatives. The bridgehead α -hydrogen of the 9-BBN ring acts as the reducing species, and the reducing ability of $\underline{1}$ is the most effective among the ate complexes such as $\text{Li}^+(\underline{\text{sec}}-\text{Bu})_3(\underline{n}-\text{Bu})\text{B}^-(\underline{2}) \text{ and } \text{Li}^+(\underline{n}-\text{Bu})_4\text{B}^-(\underline{3}).$ Although the hydride character of α -hydrogens to boron in tetra- \underline{n} -alkylboron ate complexes was originally proposed by Wittig, $\underline{3}$) only a few reports on the spectroscopic study have appeared. Especially there is no literature on the evidence for the hydride character of α -hydrogens in the $\underline{\text{sec}}$ -alkylboron and bicyclic boron ate complexes. Consequently, both the interesting reducing character of $\underline{1}$ and the lack of evidence provoked us to examine the $\underline{1}$ H and $\underline{13}$ C NMR spectra of such tetraalkylboron ate complexes.

The ate complexes $(\underline{1} - \underline{3})$ were prepared from the reaction of the corresponding trialkylboranes $(\underline{4} - \underline{6})$ with \underline{n} -butyllithium in hexane. The ${}^{1}H$ and ${}^{13}C$ NMR spectra are summarized in Tables I and II, respectively.

Table I.	^l H Chemical	Shifts of	the α -Hydrogens	to Boron <u>a</u>

Ate Complex	СН	СН ₂	СН3	Borane	СН	СН ₂	CH ₃	
<u>la</u>	0.02	0.08		<u>4a</u>	1.16	0.97		
<u>1b</u>	0	-0.16	-0.62	<u>4b</u>	1.16		0.90	
<u>2</u>	0.12	-0.14		<u>5</u>	1.30			
<u>3</u>		0.04		<u>6</u>		1.20		

 $[\]frac{a}{b}$ δ_{H} in $C_{6}D_{6}$. Some resonances have considerable line widths.

Table II. 13 C Chemical Shifts of the α -Carbons to Boron $^{-1}$

Ate Complex		Borane	
<u>la</u>	29.2 (CH ₂ and CH) b	<u>4a</u>	33.8 (CH); 28.9 (CH ₂)
<u>1b</u>	28.4 (CH ₂ and CH) $\frac{b}{}$; 5.6 (CH ₃)	<u>4b</u>	34.0 (CH); 13.6 (CH ₃)
<u>2</u>	30.8 (CH ₂ and CH) $\frac{b}{}$	<u>5</u>	31.0 (CH)
<u>3</u>	29.9 (CH ₂)	<u>6</u>	29.8 (CH ₂)

 $[\]frac{a}{c}$ The spectra were measured on a Varian XL-100-15 spectrometer operating in the Fourier transform mode at 25.2 MHz, and were taken in C_6D_6 (ca. 50 % concentration) in 12-mm sample tubes. Benzene- d_6 was served as an internal standard and an internal lock, and chemical shifts were converted to δ_C , using $\delta_C^C \delta_0^D \delta$

As is apparent from Table I, the α -hydrogens to boron in $\frac{1}{2}$ - $\frac{3}{2}$ are strongly shielded. Table II also demonstrates that the α -carbons to boron are shielded to some extents, suggesting the presence of some negative charge on the α -carbons. Consequently, the present spectroscopic data indicate that the bridgehead α -hydrogen of the 9-BBN ring in $\frac{1}{2}$ possesses strong hydride character though they do not shed light on factors which reflect the reactivity difference among $\frac{1}{2}$, and $\frac{3}{2}$.

References and Notes

- 1) Spectroscopic Studies of Organoboranes. Part IV. Paper II: Y. Yamamoto and I. Moritani, Chem. Lett., 439 (1975). Paper III: Y. Yamamoto and I. Moritani, J. Org. Chem., in press.
- 2) Y. Yamamoto, H. Toi, S-I. Murahashi, and I. Moritani, J. Am. Chem. Soc., 97, 2558 (1975).
- 3) G. Wittig, Angew. Chem., 70, 65 (1958).
- 4) a) R. Damico, J. Org. Chem., <u>29</u>, 1971 (1964); b) A. G. Massey, E. W. Randall, and D. Shaw, Spectrochim. Acta, <u>20</u>, 379 (1964); <u>21</u>, 263 (1965).
- 5) As an alternative possibility, the shielding of α -carbons may be due to the steric compression shift. However, we prefer to assume the presence of negative charge because of the results of 1 H NMR spectra. See also, J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic, New York, N. Y. (1972). In contrast to the α -carbons, the resonances of the other carbons in $\frac{1}{2}$ $\frac{3}{2}$ appeared in lower fields than those of the corresponding boranes ($\frac{4}{2}$ $\frac{6}{2}$), respectively.

(Received September 22, 1975)